Chebfun Solutions to a Class of 1D Singular and Nonlinear Boundary Value Problems

نویسندگان

چکیده

The Chebyshev collocation method implemented in Chebfun is used order to solve a class of second one-dimensional singular and genuinely nonlinear boundary value problems. Efforts these problems with conventional ChC have generally failed, the outcomes obtained by finite differences or elements are seldom satisfactory. We try fix this situation using new programming environment. However, for tough problems, we loosen default tolerance Newton’s solver as runs into trouble ill-conditioning spectral differentiation matrices. Although such cases convergence not quadratic, Newton updates decrease monotonically. This fact, along decreasing behaviour coefficients solutions, suggests that trustworthy, i.e., has exponential (geometric) rate at least an algebraic rate. consider first set exact solutions prime integrals then another benchmark do possess properties. Actually, each test problem carried out determined how solution converges, its length, accuracy especially well numerical results overlap analytical ones (existence uniqueness).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solutions of Nonlinear Singular Boundary Value Problems

We study the existence of solutions to a class of problems u + f(t, u) = 0, u(0) = u(1) = 0, where f(t, ·) is allowed to be singular at t = 0, t = 1.

متن کامل

Positive Solutions for a Class of Singular Boundary-value Problems

Using regularization and the sub-super solutions method, this note shows the existence of positive solutions for singular differential equation subject to four-point boundary conditions.

متن کامل

Positive Solutions for a Class of Singular Boundary-value Problems

This paper concerns the existence and multiplicity of positive solutions for Sturm-Liouville boundary-value problems. We use fixed point theorems and the sub-super solutions method to two solutions to the problem studied. Introduction Consider the boundary-value problem Lu = λf(t, u), 0 < t < 1 αu(0)− βu′(0) = 0, γu(1) + δu′(1) = 0, (0.1) where Lu = −(ru′)′ + qu, r, q ∈ C[0, 1] with r > 0, q ≥ ...

متن کامل

A novel technique for a class of singular boundary value problems

In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...

متن کامل

Nontrivial Solutions for Singular Nonlinear Three-Point Boundary Value Problems

The singular nonlinear three-point boundary value problems { −(Lu)(t) = h(t)f (u(t)), 0 < t < 1, βu(0)− γ u′(0) = 0, u(1) = αu(η) are discussed under some conditions concerning the first eigenvalue corresponding to the relevant linear operator, where (Lu)(t) = (p(t)u′(t))′+q(t)u(t), 0 < η < 1, h(t) is allowed to be singular at both t = 0 and t = 1, and f need not be nonnegative. The associated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computation (Basel)

سال: 2022

ISSN: ['2079-3197']

DOI: https://doi.org/10.3390/computation10070116